The ldhA gene, encoding fermentative L-lactate dehydrogenase of Corynebacterium glutamicum, is under the control of positive feedback regulation mediated by LldR.
نویسندگان
چکیده
Corynebacterium glutamicum ldhA encodes L-lactate dehydrogenase, a key enzyme that couples L-lactate production to reoxidation of NADH formed during glycolysis. We previously showed that in the absence of sugar, SugR binds to the ldhA promoter region, thereby repressing ldhA expression. In this study we show that LldR is another protein that binds to the ldhA promoter region, thus regulating ldhA expression. LldR has hitherto been characterized as an L-lactate-responsive transcriptional repressor of L-lactate utilization genes. Transposon mutagenesis of a reporter strain carrying a chromosomal ldhA promoter-lacZ fusion (PldhA-lacZ) revealed that ldhA disruption drastically decreased expression of PldhA-lacZ. PldhA-lacZ expression in the ldhA mutant was restored by deletion of lldR, suggesting that LldR acts as a repressor of ldhA in the absence of L-lactate and the LldR-mediated repression is not relieved in the ldhA mutant due to its inability to produce L-lactate. lldR deletion did not affect PldhA-lacZ expression in the wild-type background during growth on either glucose, acetate, or L-lactate. However, it upregulated PldhA-lacZ expression in the sugR mutant background during growth on acetate. The binding sites of LldR and SugR are located around the -35 and -10 regions of the ldhA promoter, respectively. C. glutamicum ldhA expression is therefore primarily repressed by SugR in the absence of sugar. In the presence of sugar, SugR-mediated repression of ldhA is alleviated, and ldhA expression is additionally enhanced by LldR inactivation in response to L-lactate produced by LdhA.
منابع مشابه
Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
Corynebacterium glutamicum can grow on L-lactate as a sole carbon and energy source. The NCgl2816-lldD operon encoding a putative transporter (NCgl2816) and a quinone-dependent L-lactate dehydrogenase (LldD) is required for L-lactate utilization. DNA affinity chromatography revealed that the FadR-type regulator LldR (encoded by NCgl2814) binds to the upstream region of NCgl2816-lldD. Overexpres...
متن کاملReducing lactate secretion by ldhA Deletion in L-glutamate- producing strain Corynebacterium glutamicum GDK-9
L-lactate is one of main byproducts excreted in to the fermentation medium. To improve L-glutamate production and reduce L-lactate accumulation, L-lactate dehydrogenase-encoding gene ldhA was knocked out from L-glutamate producing strain Corynebacterium glutamicum GDK-9, designated GDK-9ΔldhA. GDK-9ΔldhA produced approximately 10.1% more L-glutamate than the GDK-9, and yielded lower levels of s...
متن کاملThe global repressor SugR controls expression of genes of glycolysis and of the L-lactate dehydrogenase LdhA in Corynebacterium glutamicum.
The transcriptional regulator SugR from Corynebacterium glutamicum represses genes of the phosphoenolpyruvate-dependent phosphotransferase system (PTS). Growth experiments revealed that the overexpression of sugR not only perturbed the growth of C. glutamicum on the PTS sugars glucose, fructose, and sucrose but also led to a significant growth inhibition on ribose, which is not taken up via the...
متن کاملFermentative Production of Lysine by Corynebacterium glutamicum from Different Carbon Sources
Production of lysine by Corynebacterium glutamicum (PTCC 1532) from different agricultural by-products (molasses and pulpy waste date) was compared to glucose as raw materials. For this purpose, ammonium sulphate was selected as a constant nitrogen source. The effect of different nitrogen sources was also investigated with glucose as a constant carbon source. The production of L-lysine was exam...
متن کاملLactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus.
The diarrheal potential of a Bacillus cereus strain is essentially dictated by the amount of secreted nonhemolytic enterotoxin (Nhe). Expression of genes encoding Nhe is regulated by several factors, including the metabolic state of the cells. To identify metabolic sensors that could promote communication between central metabolism and nhe expression, we compared four strains of the B. cereus g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 13 شماره
صفحات -
تاریخ انتشار 2009